发布于2021-07-25 06:31 阅读(1169) 评论(0) 点赞(30) 收藏(4)
①绘制一朵花:
#!/usr/bin/env python3
""" turtle-example-suite:
tdemo_bytedesign.py
An example adapted from the example-suite
of PythonCard's turtle graphics.
It's based on an article in BYTE magazine
Problem Solving with Logo: Using Turtle
Graphics to Redraw a Design
November 1982, p. 118 - 134
-------------------------------------------
Due to the statement
t.delay(0)
in line 152, which sets the animation delay
to 0, this animation runs in "line per line"
mode as fast as possible.
"""
from turtle import Turtle, mainloop
from time import clock
# wrapper for any additional drawing routines
# that need to know about each other
class Designer(Turtle):
def design(self, homePos, scale):
self.up()
for i in range(5):
self.forward(64.65 * scale)
self.down()
self.wheel(self.position(), scale)
self.up()
self.backward(64.65 * scale)
self.right(72)
self.up()
self.goto(homePos)
self.right(36)
self.forward(24.5 * scale)
self.right(198)
self.down()
self.centerpiece(46 * scale, 143.4, scale)
self.getscreen().tracer(True)
def wheel(self, initpos, scale):
self.right(54)
for i in range(4):
self.pentpiece(initpos, scale)
self.down()
self.left(36)
for i in range(5):
self.tripiece(initpos, scale)
self.left(36)
for i in range(5):
self.down()
self.right(72)
self.forward(28 * scale)
self.up()
self.backward(28 * scale)
self.left(54)
self.getscreen().update()
def tripiece(self, initpos, scale):
oldh = self.heading()
self.down()
self.backward(2.5 * scale)
self.tripolyr(31.5 * scale, scale)
self.up()
self.goto(initpos)
self.setheading(oldh)
self.down()
self.backward(2.5 * scale)
self.tripolyl(31.5 * scale, scale)
self.up()
self.goto(initpos)
self.setheading(oldh)
self.left(72)
self.getscreen().update()
def pentpiece(self, initpos, scale):
oldh = self.heading()
self.up()
self.forward(29 * scale)
self.down()
for i in range(5):
self.forward(18 * scale)
self.right(72)
self.pentr(18 * scale, 75, scale)
self.up()
self.goto(initpos)
self.setheading(oldh)
self.forward(29 * scale)
self.down()
for i in range(5):
self.forward(18 * scale)
self.right(72)
self.pentl(18 * scale, 75, scale)
self.up()
self.goto(initpos)
self.setheading(oldh)
self.left(72)
self.getscreen().update()
def pentl(self, side, ang, scale):
if side < (2 * scale): return
self.forward(side)
self.left(ang)
self.pentl(side - (.38 * scale), ang, scale)
def pentr(self, side, ang, scale):
if side < (2 * scale): return
self.forward(side)
self.right(ang)
self.pentr(side - (.38 * scale), ang, scale)
def tripolyr(self, side, scale):
if side < (4 * scale): return
self.forward(side)
self.right(111)
self.forward(side / 1.78)
self.right(111)
self.forward(side / 1.3)
self.right(146)
self.tripolyr(side * .75, scale)
def tripolyl(self, side, scale):
if side < (4 * scale): return
self.forward(side)
self.left(111)
self.forward(side / 1.78)
self.left(111)
self.forward(side / 1.3)
self.left(146)
self.tripolyl(side * .75, scale)
def centerpiece(self, s, a, scale):
self.forward(s); self.left(a)
if s < (7.5 * scale):
return
self.centerpiece(s - (1.2 * scale), a, scale)
def main():
t = Designer()
t.speed(0)
t.hideturtle()
t.getscreen().delay(0)
t.getscreen().tracer(0)
at = clock()
t.design(t.position(), 2)
et = clock()
return "runtime: %.2f sec." % (et-at)
if __name__ == '__main__':
msg = main()
print(msg)
mainloop()
②绘制折线图:
# File: tdemo_chaos.py
# Author: Gregor Lingl
# Date: 2009-06-24
# A demonstration of chaos
from turtle import *
N = 80
def f(x):
return 3.9*x*(1-x)
def g(x):
return 3.9*(x-x**2)
def h(x):
return 3.9*x-3.9*x*x
def jumpto(x, y):
penup(); goto(x,y)
def line(x1, y1, x2, y2):
jumpto(x1, y1)
pendown()
goto(x2, y2)
def coosys():
line(-1, 0, N+1, 0)
line(0, -0.1, 0, 1.1)
def plot(fun, start, color):
pencolor(color)
x = start
jumpto(0, x)
pendown()
dot(5)
for i in range(N):
x=fun(x)
goto(i+1,x)
dot(5)
def main():
reset()
setworldcoordinates(-1.0,-0.1, N+1, 1.1)
speed(0)
hideturtle()
coosys()
plot(f, 0.35, "blue")
plot(g, 0.35, "green")
plot(h, 0.35, "red")
# Now zoom in:
for s in range(100):
setworldcoordinates(0.5*s,-0.1, N+1, 1.1)
return "Done!"
if __name__ == "__main__":
main()
mainloop()
③时钟:
#!/usr/bin/env python3
# -*- coding: cp1252 -*-
""" turtle-example-suite:
tdemo_clock.py
Enhanced clock-program, showing date
and time
------------------------------------
Press STOP to exit the program!
------------------------------------
"""
from turtle import *
from datetime import datetime
def jump(distanz, winkel=0):
penup()
right(winkel)
forward(distanz)
left(winkel)
pendown()
def hand(laenge, spitze):
fd(laenge*1.15)
rt(90)
fd(spitze/2.0)
lt(120)
fd(spitze)
lt(120)
fd(spitze)
lt(120)
fd(spitze/2.0)
def make_hand_shape(name, laenge, spitze):
reset()
jump(-laenge*0.15)
begin_poly()
hand(laenge, spitze)
end_poly()
hand_form = get_poly()
register_shape(name, hand_form)
def clockface(radius):
reset()
pensize(7)
for i in range(60):
jump(radius)
if i % 5 == 0:
fd(25)
jump(-radius-25)
else:
dot(3)
jump(-radius)
rt(6)
def setup():
global second_hand, minute_hand, hour_hand, writer
mode("logo")
make_hand_shape("second_hand", 125, 25)
make_hand_shape("minute_hand", 130, 25)
make_hand_shape("hour_hand", 90, 25)
clockface(160)
second_hand = Turtle()
second_hand.shape("second_hand")
second_hand.color("gray20", "gray80")
minute_hand = Turtle()
minute_hand.shape("minute_hand")
minute_hand.color("blue1", "red1")
hour_hand = Turtle()
hour_hand.shape("hour_hand")
hour_hand.color("blue3", "red3")
for hand in second_hand, minute_hand, hour_hand:
hand.resizemode("user")
hand.shapesize(1, 1, 3)
hand.speed(0)
ht()
writer = Turtle()
#writer.mode("logo")
writer.ht()
writer.pu()
writer.bk(85)
def wochentag(t):
wochentag = ["Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday"]
return wochentag[t.weekday()]
def datum(z):
monat = ["Jan.", "Feb.", "Mar.", "Apr.", "May", "June",
"July", "Aug.", "Sep.", "Oct.", "Nov.", "Dec."]
j = z.year
m = monat[z.month - 1]
t = z.day
return "%s %d %d" % (m, t, j)
def tick():
t = datetime.today()
sekunde = t.second + t.microsecond*0.000001
minute = t.minute + sekunde/60.0
stunde = t.hour + minute/60.0
try:
tracer(False) # Terminator can occur here
writer.clear()
writer.home()
writer.forward(65)
writer.write(wochentag(t),
align="center", font=("Courier", 14, "bold"))
writer.back(150)
writer.write(datum(t),
align="center", font=("Courier", 14, "bold"))
writer.forward(85)
tracer(True)
second_hand.setheading(6*sekunde) # or here
minute_hand.setheading(6*minute)
hour_hand.setheading(30*stunde)
tracer(True)
ontimer(tick, 100)
except Terminator:
pass # turtledemo user pressed STOP
def main():
tracer(False)
setup()
tracer(True)
tick()
return "EVENTLOOP"
if __name__ == "__main__":
mode("logo")
msg = main()
print(msg)
mainloop()
④颜色搭配:
# colormixer
from turtle import Screen, Turtle, mainloop
class ColorTurtle(Turtle):
def __init__(self, x, y):
Turtle.__init__(self)
self.shape("turtle")
self.resizemode("user")
self.shapesize(3,3,5)
self.pensize(10)
self._color = [0,0,0]
self.x = x
self._color[x] = y
self.color(self._color)
self.speed(0)
self.left(90)
self.pu()
self.goto(x,0)
self.pd()
self.sety(1)
self.pu()
self.sety(y)
self.pencolor("gray25")
self.ondrag(self.shift)
def shift(self, x, y):
self.sety(max(0,min(y,1)))
self._color[self.x] = self.ycor()
self.fillcolor(self._color)
setbgcolor()
def setbgcolor():
screen.bgcolor(red.ycor(), green.ycor(), blue.ycor())
def main():
global screen, red, green, blue
screen = Screen()
screen.delay(0)
screen.setworldcoordinates(-1, -0.3, 3, 1.3)
red = ColorTurtle(0, .5)
green = ColorTurtle(1, .5)
blue = ColorTurtle(2, .5)
setbgcolor()
writer = Turtle()
writer.ht()
writer.pu()
writer.goto(1,1.15)
writer.write("DRAG!",align="center",font=("Arial",30,("bold","italic")))
return "EVENTLOOP"
if __name__ == "__main__":
msg = main()
print(msg)
mainloop()
⑤绘制一片森林:
#!/usr/bin/env python3
""" turtlegraphics-example-suite:
tdemo_forest.py
Displays a 'forest' of 3 breadth-first-trees
similar to the one in tree.
For further remarks see tree.py
This example is a 'breadth-first'-rewrite of
a Logo program written by Erich Neuwirth. See
http://homepage.univie.ac.at/erich.neuwirth/
"""
from turtle import Turtle, colormode, tracer, mainloop
from random import randrange
from time import clock
def symRandom(n):
return randrange(-n,n+1)
def randomize( branchlist, angledist, sizedist ):
return [ (angle+symRandom(angledist),
sizefactor*1.01**symRandom(sizedist))
for angle, sizefactor in branchlist ]
def randomfd( t, distance, parts, angledist ):
for i in range(parts):
t.left(symRandom(angledist))
t.forward( (1.0 * distance)/parts )
def tree(tlist, size, level, widthfactor, branchlists, angledist=10, sizedist=5):
# benutzt Liste von turtles und Liste von Zweiglisten,
# fuer jede turtle eine!
if level > 0:
lst = []
brs = []
for t, branchlist in list(zip(tlist,branchlists)):
t.pensize( size * widthfactor )
t.pencolor( 255 - (180 - 11 * level + symRandom(15)),
180 - 11 * level + symRandom(15),
0 )
t.pendown()
randomfd(t, size, level, angledist )
yield 1
for angle, sizefactor in branchlist:
t.left(angle)
lst.append(t.clone())
brs.append(randomize(branchlist, angledist, sizedist))
t.right(angle)
for x in tree(lst, size*sizefactor, level-1, widthfactor, brs,
angledist, sizedist):
yield None
def start(t,x,y):
colormode(255)
t.reset()
t.speed(0)
t.hideturtle()
t.left(90)
t.penup()
t.setpos(x,y)
t.pendown()
def doit1(level, pen):
pen.hideturtle()
start(pen, 20, -208)
t = tree( [pen], 80, level, 0.1, [[ (45,0.69), (0,0.65), (-45,0.71) ]] )
return t
def doit2(level, pen):
pen.hideturtle()
start(pen, -135, -130)
t = tree( [pen], 120, level, 0.1, [[ (45,0.69), (-45,0.71) ]] )
return t
def doit3(level, pen):
pen.hideturtle()
start(pen, 190, -90)
t = tree( [pen], 100, level, 0.1, [[ (45,0.7), (0,0.72), (-45,0.65) ]] )
return t
# Hier 3 Baumgeneratoren:
def main():
p = Turtle()
p.ht()
tracer(75,0)
u = doit1(6, Turtle(undobuffersize=1))
s = doit2(7, Turtle(undobuffersize=1))
t = doit3(5, Turtle(undobuffersize=1))
a = clock()
while True:
done = 0
for b in u,s,t:
try:
b.__next__()
except:
done += 1
if done == 3:
break
tracer(1,10)
b = clock()
return "runtime: %.2f sec." % (b-a)
if __name__ == '__main__':
main()
mainloop()
⑥绘制两个图形:
#!/usr/bin/env python3
""" turtle-example-suite:
tdemo_fractalCurves.py
This program draws two fractal-curve-designs:
(1) A hilbert curve (in a box)
(2) A combination of Koch-curves.
The CurvesTurtle class and the fractal-curve-
methods are taken from the PythonCard example
scripts for turtle-graphics.
"""
from turtle import *
from time import sleep, clock
class CurvesTurtle(Pen):
# example derived from
# Turtle Geometry: The Computer as a Medium for Exploring Mathematics
# by Harold Abelson and Andrea diSessa
# p. 96-98
def hilbert(self, size, level, parity):
if level == 0:
return
# rotate and draw first subcurve with opposite parity to big curve
self.left(parity * 90)
self.hilbert(size, level - 1, -parity)
# interface to and draw second subcurve with same parity as big curve
self.forward(size)
self.right(parity * 90)
self.hilbert(size, level - 1, parity)
# third subcurve
self.forward(size)
self.hilbert(size, level - 1, parity)
# fourth subcurve
self.right(parity * 90)
self.forward(size)
self.hilbert(size, level - 1, -parity)
# a final turn is needed to make the turtle
# end up facing outward from the large square
self.left(parity * 90)
# Visual Modeling with Logo: A Structural Approach to Seeing
# by James Clayson
# Koch curve, after Helge von Koch who introduced this geometric figure in 1904
# p. 146
def fractalgon(self, n, rad, lev, dir):
import math
# if dir = 1 turn outward
# if dir = -1 turn inward
edge = 2 * rad * math.sin(math.pi / n)
self.pu()
self.fd(rad)
self.pd()
self.rt(180 - (90 * (n - 2) / n))
for i in range(n):
self.fractal(edge, lev, dir)
self.rt(360 / n)
self.lt(180 - (90 * (n - 2) / n))
self.pu()
self.bk(rad)
self.pd()
# p. 146
def fractal(self, dist, depth, dir):
if depth < 1:
self.fd(dist)
return
self.fractal(dist / 3, depth - 1, dir)
self.lt(60 * dir)
self.fractal(dist / 3, depth - 1, dir)
self.rt(120 * dir)
self.fractal(dist / 3, depth - 1, dir)
self.lt(60 * dir)
self.fractal(dist / 3, depth - 1, dir)
def main():
ft = CurvesTurtle()
ft.reset()
ft.speed(0)
ft.ht()
ft.getscreen().tracer(1,0)
ft.pu()
size = 6
ft.setpos(-33*size, -32*size)
ft.pd()
ta=clock()
ft.fillcolor("red")
ft.begin_fill()
ft.fd(size)
ft.hilbert(size, 6, 1)
# frame
ft.fd(size)
for i in range(3):
ft.lt(90)
ft.fd(size*(64+i%2))
ft.pu()
for i in range(2):
ft.fd(size)
ft.rt(90)
ft.pd()
for i in range(4):
ft.fd(size*(66+i%2))
ft.rt(90)
ft.end_fill()
tb=clock()
res = "Hilbert: %.2fsec. " % (tb-ta)
sleep(3)
ft.reset()
ft.speed(0)
ft.ht()
ft.getscreen().tracer(1,0)
ta=clock()
ft.color("black", "blue")
ft.begin_fill()
ft.fractalgon(3, 250, 4, 1)
ft.end_fill()
ft.begin_fill()
ft.color("red")
ft.fractalgon(3, 200, 4, -1)
ft.end_fill()
tb=clock()
res += "Koch: %.2fsec." % (tb-ta)
return res
if __name__ == '__main__':
msg = main()
print(msg)
mainloop()
⑦绘制两个以美丽的线条组成的矩形:
#!/usr/bin/env python3
""" turtle-example-suite:
xtx_lindenmayer_indian.py
Each morning women in Tamil Nadu, in southern
India, place designs, created by using rice
flour and known as kolam on the thresholds of
their homes.
These can be described by Lindenmayer systems,
which can easily be implemented with turtle
graphics and Python.
Two examples are shown here:
(1) the snake kolam
(2) anklets of Krishna
Taken from Marcia Ascher: Mathematics
Elsewhere, An Exploration of Ideas Across
Cultures
"""
################################
# Mini Lindenmayer tool
###############################
from turtle import *
def replace( seq, replacementRules, n ):
for i in range(n):
newseq = ""
for element in seq:
newseq = newseq + replacementRules.get(element,element)
seq = newseq
return seq
def draw( commands, rules ):
for b in commands:
try:
rules[b]()
except TypeError:
try:
draw(rules[b], rules)
except:
pass
def main():
################################
# Example 1: Snake kolam
################################
def r():
right(45)
def l():
left(45)
def f():
forward(7.5)
snake_rules = {"-":r, "+":l, "f":f, "b":"f+f+f--f--f+f+f"}
snake_replacementRules = {"b": "b+f+b--f--b+f+b"}
snake_start = "b--f--b--f"
drawing = replace(snake_start, snake_replacementRules, 3)
reset()
speed(3)
tracer(1,0)
ht()
up()
backward(195)
down()
draw(drawing, snake_rules)
from time import sleep
sleep(3)
################################
# Example 2: Anklets of Krishna
################################
def A():
color("red")
circle(10,90)
def B():
from math import sqrt
color("black")
l = 5/sqrt(2)
forward(l)
circle(l, 270)
forward(l)
def F():
color("green")
forward(10)
krishna_rules = {"a":A, "b":B, "f":F}
krishna_replacementRules = {"a" : "afbfa", "b" : "afbfbfbfa" }
krishna_start = "fbfbfbfb"
reset()
speed(0)
tracer(3,0)
ht()
left(45)
drawing = replace(krishna_start, krishna_replacementRules, 3)
draw(drawing, krishna_rules)
tracer(1)
return "Done!"
if __name__=='__main__':
msg = main()
print(msg)
mainloop()
⑧汉诺塔小游戏:
#!/usr/bin/env python3
""" turtle-example-suite:
tdemo_minimal_hanoi.py
A minimal 'Towers of Hanoi' animation:
A tower of 6 discs is transferred from the
left to the right peg.
An imho quite elegant and concise
implementation using a tower class, which
is derived from the built-in type list.
Discs are turtles with shape "square", but
stretched to rectangles by shapesize()
---------------------------------------
To exit press STOP button
---------------------------------------
"""
from turtle import *
class Disc(Turtle):
def __init__(self, n):
Turtle.__init__(self, shape="square", visible=False)
self.pu()
self.shapesize(1.5, n*1.5, 2) # square-->rectangle
self.fillcolor(n/6., 0, 1-n/6.)
self.st()
class Tower(list):
"Hanoi tower, a subclass of built-in type list"
def __init__(self, x):
"create an empty tower. x is x-position of peg"
self.x = x
def push(self, d):
d.setx(self.x)
d.sety(-150+34*len(self))
self.append(d)
def pop(self):
d = list.pop(self)
d.sety(150)
return d
def hanoi(n, from_, with_, to_):
if n > 0:
hanoi(n-1, from_, to_, with_)
to_.push(from_.pop())
hanoi(n-1, with_, from_, to_)
def play():
onkey(None,"space")
clear()
try:
hanoi(6, t1, t2, t3)
write("press STOP button to exit",
align="center", font=("Courier", 16, "bold"))
except Terminator:
pass # turtledemo user pressed STOP
def main():
global t1, t2, t3
ht(); penup(); goto(0, -225) # writer turtle
t1 = Tower(-250)
t2 = Tower(0)
t3 = Tower(250)
# make tower of 6 discs
for i in range(6,0,-1):
t1.push(Disc(i))
# prepare spartanic user interface ;-)
write("press spacebar to start game",
align="center", font=("Courier", 16, "bold"))
onkey(play, "space")
listen()
return "EVENTLOOP"
if __name__=="__main__":
msg = main()
print(msg)
mainloop()
⑧矩形小游戏:
""" turtle-example-suite:
tdemo_nim.py
Play nim against the computer. The player
who takes the last stick is the winner.
Implements the model-view-controller
design pattern.
"""
import turtle
import random
import time
SCREENWIDTH = 640
SCREENHEIGHT = 480
MINSTICKS = 7
MAXSTICKS = 31
HUNIT = SCREENHEIGHT // 12
WUNIT = SCREENWIDTH // ((MAXSTICKS // 5) * 11 + (MAXSTICKS % 5) * 2)
SCOLOR = (63, 63, 31)
HCOLOR = (255, 204, 204)
COLOR = (204, 204, 255)
def randomrow():
return random.randint(MINSTICKS, MAXSTICKS)
def computerzug(state):
xored = state[0] ^ state[1] ^ state[2]
if xored == 0:
return randommove(state)
for z in range(3):
s = state[z] ^ xored
if s <= state[z]:
move = (z, s)
return move
def randommove(state):
m = max(state)
while True:
z = random.randint(0,2)
if state[z] > (m > 1):
break
rand = random.randint(m > 1, state[z]-1)
return z, rand
class NimModel(object):
def __init__(self, game):
self.game = game
def setup(self):
if self.game.state not in [Nim.CREATED, Nim.OVER]:
return
self.sticks = [randomrow(), randomrow(), randomrow()]
self.player = 0
self.winner = None
self.game.view.setup()
self.game.state = Nim.RUNNING
def move(self, row, col):
maxspalte = self.sticks[row]
self.sticks[row] = col
self.game.view.notify_move(row, col, maxspalte, self.player)
if self.game_over():
self.game.state = Nim.OVER
self.winner = self.player
self.game.view.notify_over()
elif self.player == 0:
self.player = 1
row, col = computerzug(self.sticks)
self.move(row, col)
self.player = 0
def game_over(self):
return self.sticks == [0, 0, 0]
def notify_move(self, row, col):
if self.sticks[row] <= col:
return
self.move(row, col)
class Stick(turtle.Turtle):
def __init__(self, row, col, game):
turtle.Turtle.__init__(self, visible=False)
self.row = row
self.col = col
self.game = game
x, y = self.coords(row, col)
self.shape("square")
self.shapesize(HUNIT/10.0, WUNIT/20.0)
self.speed(0)
self.pu()
self.goto(x,y)
self.color("white")
self.showturtle()
def coords(self, row, col):
packet, remainder = divmod(col, 5)
x = (3 + 11 * packet + 2 * remainder) * WUNIT
y = (2 + 3 * row) * HUNIT
return x - SCREENWIDTH // 2 + WUNIT // 2, SCREENHEIGHT // 2 - y - HUNIT // 2
def makemove(self, x, y):
if self.game.state != Nim.RUNNING:
return
self.game.controller.notify_move(self.row, self.col)
class NimView(object):
def __init__(self, game):
self.game = game
self.screen = game.screen
self.model = game.model
self.screen.colormode(255)
self.screen.tracer(False)
self.screen.bgcolor((240, 240, 255))
self.writer = turtle.Turtle(visible=False)
self.writer.pu()
self.writer.speed(0)
self.sticks = {}
for row in range(3):
for col in range(MAXSTICKS):
self.sticks[(row, col)] = Stick(row, col, game)
self.display("... a moment please ...")
self.screen.tracer(True)
def display(self, msg1, msg2=None):
self.screen.tracer(False)
self.writer.clear()
if msg2 is not None:
self.writer.goto(0, - SCREENHEIGHT // 2 + 48)
self.writer.pencolor("red")
self.writer.write(msg2, align="center", font=("Courier",18,"bold"))
self.writer.goto(0, - SCREENHEIGHT // 2 + 20)
self.writer.pencolor("black")
self.writer.write(msg1, align="center", font=("Courier",14,"bold"))
self.screen.tracer(True)
def setup(self):
self.screen.tracer(False)
for row in range(3):
for col in range(self.model.sticks[row]):
self.sticks[(row, col)].color(SCOLOR)
for row in range(3):
for col in range(self.model.sticks[row], MAXSTICKS):
self.sticks[(row, col)].color("white")
self.display("Your turn! Click leftmost stick to remove.")
self.screen.tracer(True)
def notify_move(self, row, col, maxspalte, player):
if player == 0:
farbe = HCOLOR
for s in range(col, maxspalte):
self.sticks[(row, s)].color(farbe)
else:
self.display(" ... thinking ... ")
time.sleep(0.5)
self.display(" ... thinking ... aaah ...")
farbe = COLOR
for s in range(maxspalte-1, col-1, -1):
time.sleep(0.2)
self.sticks[(row, s)].color(farbe)
self.display("Your turn! Click leftmost stick to remove.")
def notify_over(self):
if self.game.model.winner == 0:
msg2 = "Congrats. You're the winner!!!"
else:
msg2 = "Sorry, the computer is the winner."
self.display("To play again press space bar. To leave press ESC.", msg2)
def clear(self):
if self.game.state == Nim.OVER:
self.screen.clear()
class NimController(object):
def __init__(self, game):
self.game = game
self.sticks = game.view.sticks
self.BUSY = False
for stick in self.sticks.values():
stick.onclick(stick.makemove)
self.game.screen.onkey(self.game.model.setup, "space")
self.game.screen.onkey(self.game.view.clear, "Escape")
self.game.view.display("Press space bar to start game")
self.game.screen.listen()
def notify_move(self, row, col):
if self.BUSY:
return
self.BUSY = True
self.game.model.notify_move(row, col)
self.BUSY = False
class Nim(object):
CREATED = 0
RUNNING = 1
OVER = 2
def __init__(self, screen):
self.state = Nim.CREATED
self.screen = screen
self.model = NimModel(self)
self.view = NimView(self)
self.controller = NimController(self)
def main():
mainscreen = turtle.Screen()
mainscreen.mode("standard")
mainscreen.setup(SCREENWIDTH, SCREENHEIGHT)
nim = Nim(mainscreen)
return "EVENTLOOP"
if __name__ == "__main__":
main()
turtle.mainloop()
⑨跟着鼠标走的小红点:
#!/usr/bin/env python3
""" turtle-example-suite:
tdemo_paint.py
A simple event-driven paint program
- left mouse button moves turtle
- middle mouse button changes color
- right mouse button toogles betweem pen up
(no line drawn when the turtle moves) and
pen down (line is drawn). If pen up follows
at least two pen-down moves, the polygon that
includes the starting point is filled.
-------------------------------------------
Play around by clicking into the canvas
using all three mouse buttons.
-------------------------------------------
To exit press STOP button
-------------------------------------------
"""
from turtle import *
def switchupdown(x=0, y=0):
if pen()["pendown"]:
end_fill()
up()
else:
down()
begin_fill()
def changecolor(x=0, y=0):
global colors
colors = colors[1:]+colors[:1]
color(colors[0])
def main():
global colors
shape("circle")
resizemode("user")
shapesize(.5)
width(3)
colors=["red", "green", "blue", "yellow"]
color(colors[0])
switchupdown()
onscreenclick(goto,1)
onscreenclick(changecolor,2)
onscreenclick(switchupdown,3)
return "EVENTLOOP"
if __name__ == "__main__":
msg = main()
print(msg)
mainloop()
原文链接:https://blog.csdn.net/PanDaoxi2020/article/details/119004081
作者:我想吃麻辣烫
链接:http://www.pythonpdf.com/blog/article/409/42b6ae051f478142a24c/
来源:编程知识网
任何形式的转载都请注明出处,如有侵权 一经发现 必将追究其法律责任
昵称:
评论内容:(最多支持255个字符)
投诉与举报,广告合作请联系vgs_info@163.com或QQ3083709327
免责声明:网站文章均由用户上传,仅供读者学习交流使用,禁止用做商业用途。若文章涉及色情,反动,侵权等违法信息,请向我们举报,一经核实我们会立即删除!